Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 257(1): 5-16, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35007346

RESUMO

WD repeat domain 19 (Wdr19) is a major component of the intraflagellar transport (IFT) machinery, which is involved in the function of primary cilia. However, the effects of Wdr19 on primary cilia formation, cystogenesis, and polycystic kidney disease (PKD) progression remain unclear. To study these effects, we generated three lines of kidney-specific conditional knockout mice: Wdr19-knockout (Wdr19-KO, Wdr19f/- ::Cdh16-CreTg/0 ), Pkd1-knockout (Pkd1-KO, Pkd1f/- ::Cdh16-CreTg/0 ), and Wdr19/Pkd1-double knockout (Wdr19&Pkd1-dKO, Wdr19f/- ;Pkd1f/- ::Cdh16-CreTg/0 ) mice. Ultrastructural analysis using transmission electron microscopy (TEM) indicated that the primary cilia were almost absent at postnatal day 10 in Wdr19-KO mice compared with Pkd1-KO and wild-type (WT) mice. However, the primary cilia appeared structurally normal even if malfunctional in Pkd1-deficient cysts. The Pkd1-KO mice had the most severe PKD progression, including the shortest lifespan (14 days) and the largest renal cysts, among the three knockout lines. Thus, the molecular mechanism of renal cystogenesis in Wdr19-KO mice (primary cilia abrogation) was different from that in Pkd1-KO mice (primary cilia malfunction). In summary, Wdr19 deficiency leads to primary cilia abrogation and renal cyst formation. Wdr19 is primarily proposed to participate in retrograde IFT and to be crucial for the construction of primary cilia, which are critical organelles for tubulogenesis in the developing kidneys. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Cistos , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Caderinas , Cistos/patologia , Modelos Animais de Doenças , Rim/patologia , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Canais de Cátion TRPP/genética
2.
Sci Rep ; 6: 35635, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762297

RESUMO

Inflammatory bowel disease is a chronic and progressive inflammatory intestinal disease that includes two major types, namely ulcerative colitis and Crohn's disease (CD). CD is characterized by intestinal epithelial hyperplasia and inflammatory cell infiltration. Transfer of CD25-CD45RBhiCD4+ (naïve) T cells into immunodeficiency mice induces autoimmune colitis with pathological lesions similar to CD and loss of body weight 4 weeks after cell transfer. However, weight loss neither has sufficient sensitivity nor totally matches the pathological findings of CD. To establish an early and sensitive indicator of autoimmune colitis model, the transferred T cell-induced colitis mouse model was modified by transferring luciferase-expressing donor T cells and determining the colitis by in vivo imaging system (IVIS). Colitis was detected with IVIS 7-10 days before the onset of body weight loss and diarrhea. IVIS was also applied in the dexamethasone treatment trial, and was a more sensitive indicator than body weight changes. All IVIS signals were parallel to the pathological abnormalities of the gut and immunological analysis results. In summary, IVIS provides both sensitive and objective means to monitor the disease course of transferred T cell-induced CD and fulfills the 3Rs principle of humane care of laboratory animals.


Assuntos
Transferência Adotiva , Doenças Autoimunes/diagnóstico , Colite/diagnóstico , Microscopia Intravital/métodos , Imagem Óptica/métodos , Linfócitos T/imunologia , Animais , Doenças Autoimunes/complicações , Colite/complicações , Diarreia/etiologia , Modelos Animais de Doenças , Intestinos/patologia , Camundongos , Redução de Peso
3.
Photochem Photobiol ; 91(3): 654-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25099963

RESUMO

The photophysical properties of fluorescent Hammett acidity indicator derived from 3,4,5,6-tetrahydrobis(pyrido[3,2-g]indolo)[2,3-a:3',2'-j]acridine (1a), 6-bis(pyrido[3,2-g]indol-2'-yl)pyridine (1b) and their analogues have been investigated in sulfuric acid solutions by means of absorption, fluorimetry, relaxation dynamics and computational approach. These new indicators undergo a reversible protonation process in the Hammett acidity range of H0 < 0, accompanied by a drastic increase of the bright blue-green (1a) or yellow (1b) fluorescence intensity upon increasing the acidity. For 1a in H2 SO4 , the emission yield increases as large as 200 folds from pH = -0.41 to the Hammett acidity range of -5.17, the results of which are rationalized by a much increase of the steric hindrance upon third protonation toward the central pyridinic site, together with their accompanied changes of electronic configuration from charge transfer to a delocalized ππ* character in the lowest lying excited state. The combination of 1a and 1b renders a wide and linear range of H0 measurement from -1.2 to -5.1 detected by highly intensive fluorescence.


Assuntos
Ácidos/análise , Corantes Fluorescentes/química , Prótons , Concentração de Íons de Hidrogênio , Teoria Quântica , Ácidos Sulfúricos/análise , Ácidos Sulfúricos/química
4.
Langmuir ; 30(43): 12755-64, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25294101

RESUMO

We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.


Assuntos
Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Prata/química , Animais , Bovinos , Coloides , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
Biophys J ; 99(10): 3454-62, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081095

RESUMO

We report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively. The competition binding data presented here suggest that the specific nucleic acid binding interactions of Tat and Rev can effectively compete with the general nucleic acid binding/chaperone functions of the nucleocapsid protein, and thus may in principle help regulate critical events during the HIV life cycle.


Assuntos
Arginina/metabolismo , HIV-1/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Dedos de Zinco , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Repetição Terminal Longa de HIV/genética , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , RNA Viral/química , RNA Viral/genética , Elementos de Resposta/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
6.
J Am Chem Soc ; 131(42): 15534-43, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19919167

RESUMO

The human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein is believed to be unique among the nucleic acid (NA) binding proteins encoded by this retrovirus in being highly multifunctional and relatively nonsequence-specific. Underlying many of NC's putative functions, including for example its chaperon-like activity for various steps of HIV-1 reverse transcription, is NC's ability to partially melt short double-stranded regions of structured NAs, which is essentially a consequence of NC's general binding preference for single-stranded bases. Herein we report a different, previously undiscovered, mode of NC/NA interaction, i.e., NC-induced sharp bending of short segments of fully duplexed DNA/DNA and DNA/RNA. We use single-molecule fluorescence resonance energy transfer (SM-FRET) in vitro to probe NC-induced NA bending and associated heterogeneous conformational dynamics for model NC/NA complexes. NC-induced NA bending may have important biological roles in the previously reported NC-mediated condensation of duplex proviral DNA in the HIV-1 life cycle.


Assuntos
DNA/química , HIV-1/química , Proteínas do Nucleocapsídeo/química , Sequência de Aminoácidos , HIV-1/genética , Dados de Sequência Molecular , Mutação , Proteínas do Nucleocapsídeo/genética
7.
Dalton Trans ; (19): 1881-90, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17702166

RESUMO

We report the preparation of a series of new heteroleptic Ir(III) metal complexes chelated by two cyclometalated 1-(2,4-difluorophenyl)pyrazole ligands (dfpz)H and a third ancillary bidentate ligand (L=X). Such an intricate design lies in a core concept that the cyclometalated dfpz ligands always warrant a greater pi pi* gap in these series of iridium complexes. Accordingly, the lowest one-electron excitation would accommodate the pi* orbital of the ancillary L=X ligands, the functionalization of which is then exploited to fine-tune the phosphorescent emission wavelengths. Amongst the L=X ligands designed, three classes (series 1-3) can be categorized, and remarkable bathochromic shifts of phosphorescence were observed by (i) replacing the 2-benzoxazol-2-yl substituent (1a) with the 2-benzothiazol-2-yl group (1b) in the phenolate complexes, (ii) converting the pyridyl group (2a) to the pyrazolyl group (2b) and even to the isoquinolyl group (2c) in the pyrazolate complexes and (iii) extending the pi-conjugation of the benzimidazolate ligand from 3a to 3b. Single-crystal X-ray diffraction study on complex [(dfpz)Ir(bzpz)] (2b) was conducted to confirm their general molecular architectures. Complex 2b was also used as a representative example for fabrication of multilayered, green-emitting phosphorescent OLEDs using the direct thermal evaporation technique.

8.
Chemistry ; 13(9): 2686-94, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17171730

RESUMO

Preparation of a new series of neutral metal complexes [(cod)Ir(fppz)] (1), [(cod)Ir(bppz)] (2), [(cod)Ir(fptz)] (3) and [(cod)Ir(bptz)] (4), bearing one cod ligand and a pyridyl azolate chelate are reported. A single-crystal X-ray diffraction study of 3 reveals the expected distorted square-planar geometry. The lowest absorption band consists of IrI atom increased triplet dpi-->pi* transitions (3MLCT), the assignment of which is firmly supported by the theoretical approaches. Complexes 1-4 exhibit weak phosphorescence in degassed solution at room temperature, whereas much more intense, solid-state phosphorescence appears in the range 622-649 nm. The pure MLCT emission was used as a prototypical model to address its remarkable spectral differences from the IrIII isoquinoline pyrrolide complex (5), which has mainly 3pipi phosphorescence. Complex 3 was used as a dopant to fabricate red-emitting phosphorescent organic light-emitting diodes (OLEDs). For the 7 % doped device, a maximum brightness of 3010 cd m-2 was achieved at an applied voltage of 15 V and with CIE coordinates of (0.56, 0.33), demonstrating for the first time the potential of neutral IrI complexes in OLED applications.

10.
Chem Commun (Camb) ; (25): 2693-5, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16786090

RESUMO

A new class of highly fluorescent dyes, 4,8-diphenyl-2-oxa-bicyclo[3.3.0]octa-4,8-diene-3,6-diones (1a-c), have been synthesized, they all exhibit unity fluorescence quantum yield and short radiative lifetime (< 4 ns) in common organic solvents and have demonstrated remarkable amplified spontaneous emission with a gain efficiency of > 10.

11.
Inorg Chem ; 45(1): 137-46, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16390049

RESUMO

A new series of luminescent platinum(II) azolate complexes with a formula of [Pt(NwedgeN)(2)], in which NwedgeN = mppz (1), bppz (2a), bzpz (2b), bmpz (2c), bqpz (2d), fppz (3a), hppz (3b), bptz (4), hptz (5), were synthesized, and their photophyscial properties were examined. Single-crystal X-ray diffraction studies of 2c and 3b revealed a planar molecular geometry, in which the NwedgeN chelates adopt a trans configuration and show notable interligand C-H...N hydrogen bonding within the complex. Interesting intermolecular interactions were observed in the solid state. Complex 2c formed a slipped-stack structure with a Pt...Pt separation distance of 6.432 Angstroms, while complex 3b showed a columnar stacking with the molecules oriented in an alternating order in relation to the chain axis, giving a much reduced Pt...Pt distance of 3.442 Angstroms. The lowest absorption band for all complexes revealed strong state mixings between the singlet and triplet (MLCT and intraligand pipi) manifolds. Complexes 1 and 2 showed mixed (3)MLCT and (3)pipi phosphorescence in fluid solution. While radiationless deactivation was apparently dominant for complexes 3-5 in solution, resulting in rather weak emission, strong phosphorescence was observed in the room-temperature solid state with the peak wavelength being significantly red shifted compared to that in solution. The emission nature has been tentatively assigned to be (3)MMLCT in character. OLED devices with a multilayer configuration of ITO/NPB/CBP:2a/BCP/Alq(3)/LiF/Al were successfully fabricated using a CBP layer doped with various amount of 2a, ranging from 6 to 100%, as the emitting layer. A substantial red shift with increasing doping concentrations was observed in electroluminescence. With a neat film of 2a, the device showed a green emission with lambda(max) at 556 nm and an external QE of approximately 1.6% at a driving current of 20 mA. Similarly, for the device using a neat film of 3a, an electroluminescence centered at 616 nm with a slightly reduced external QE of approximately 2.1% was recorded. Aggregation of platinum(II) complexes in the solid state was proposed to account for the large red-shift in electroluminescence.

13.
Inorg Chem ; 44(22): 7770-80, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16241126

RESUMO

A series of heteroleptic Ir(III) metal complexes 1-3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. The N-phenylpyrazole ligands, dfpzH = 1-(2,4-difluorophenyl)pyrazole, fpzH = 1-(4-fluorophenyl)pyrazole, dfmpzH = 1-(2,4-difluorophenyl)-3,5-dimethylpyrazole, and fmpzH = 1-(4-fluorophenyl)-3,5-dimethylpyrazole, show a similar reaction pattern with respect to the typical cyclometalated (C(wedge)N) chelate, which utilizes its ortho-substituted phenyl segment to link with the central Ir(III) atom, while the second 2-pyridylpyrazole (or triazole) ligand, namely, fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, fptzH = 3-(trifluoromethyl)-5-(2-pyridyl)triazole, and hptzH = 3-(heptafluoropropyl)-5-(2-pyridyl)triazole, undergoes typical anionic (N--N) chelation to complete the octahedral framework. X-ray structural analyses on complexes [(dfpz)(2)Ir(fppz)] (1a) and [(fmpz)(2)Ir(hptz)] (3d) were established to confirm their molecular structures. Increases of the pipi energy gaps of the Ir(III) metal complexes were systematically achieved with two tuning strategies. One involves the substitution for one or two fluorine atoms at the N-phenyl segment or the introduction of two electron-releasing methyl substituents at the pyrazole segment of the H(C--N) ligands. Alternatively, we have applied the more electron-accepting triazolate in place of the pyrazolate segment for the third (N--N)H ligand. Our results, on the basis of steady-state, relaxation dynamics, and theoretical approaches, lead to a conclusion that, for complexes 1-3, the weakening of iridium metal-ligand bonding strength in the T(1) state plays a crucial role for the fast radiationless deactivation. For the case of [(fmpz)(2)Ir(hptz)] (3d), a thermal deactivation barrier of 4.8 kcal/mol was further deduced via temperature-dependent studies. The results provide a theoretical basis for future design and synthesis of the corresponding analogues suited to blue phosphorescent emitters.

14.
Chemistry ; 11(21): 6347-57, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16086340

RESUMO

The rational design and syntheses of a new series of Os(II) complexes with formula [Os(fppz)(2)(CO)(L)] (1: L=4-dimethylaminopyridine; 2: L = pyridine; 3: L = 4,4'-bipyridine; 4: L = pyridazine; 5: L = 4-cyanopyridine), bearing two (2-pyridyl)pyrazolate ligands (fppz) together with one carbonyl and one N-heterocyclic ligand at the axial positions are reported. Single-crystal X-ray diffraction studies of, for example, 2 reveal a distorted octahedral geometry in which both fppz ligands reside in the equatorial plane with a trans configuration and adopt a bent arrangement at the metal center with a dihedral angle of approximately 23 degrees , while the carbonyl and pyridine ligands are located at the axial positions. Variation of the axial N-heterocyclic ligand leads to remarkable changes in the photophysical properties as the energy gap and hence the phosphorescence peak wavelength can be tuned. For complexes 1 and 2 the solvent-polarity-independent phosphorescence originates from a combination of intraligand (3)pi-pi* ((3)ILCT) and metal-to-ligand charge transfer transitions ((3)MLCT). In sharp contrast, as supported by cyclic voltammetry measurements and theoretical calculations, complexes 3--5 exhibit mainly ligand-to-ligand charge transfer (LLCT) transitions, resulting in a large dipolar change. The phosphorescence of complexes 3--5 thus exhibits a strong dependence on the polarity of the solvent, being shifted for example, from 560 (in C(6)H(12)) to 665 nm (in CH(3)CN) and from 603 (in C(6)H(12)) to 710 nm (in CH(3)CN) for complexes 3 and 5, respectively. The results clearly demonstrate that a simple, straightforward derivatization of the axial N-heterocyclic ligand drastically alters the excitation properties per se from intraligand charge transfer (ILCT) to LLCT transitions. The latter exhibit remarkable LLCT phosphorescence solvatochromism so that a broad range of color tunability can be achieved.

15.
Inorg Chem ; 44(13): 4594-603, 2005 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-15962966

RESUMO

A new series of quinolinolate osmium carbonyl complexes were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies indicate that these complexes consist of an octahedral ligand arrangement with one chelating quinolinolate, one tfa or halide ligand, and three mutually orthogonal terminal CO ligands. Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects, while changing the tfa ligand to an electron-donating iodide slightly increases the charge density on the central osmium atom. These Os(II) complexes show salient dual emissions consisting of fluorescence and phosphorescence, the spectral properties and relaxation dynamics of which have been studied comprehensively. The results, in combination with the theoretical approaches, lead us to propose that the emission mainly originates from the quinolinolate pi pi* state. Both experimental and theoretical approaches generalize various types of intersystem crossing versus those of the tris(quinolinolate) iridium Ir(Q)3, and their relative efficiencies were accessed on the basis of the associated frontier orbital configurations. Our results suggest that [1d(pi)pi* absolute value(H(so))3 pi pi*] (or [3d(pi)pi* absolute value(H(so))1 pi pi*]) in combination with a smaller deltaE(S1-T1) gap (i.e., increasing the MLCT (d(pi)pi*) character) is the main driving force to induce the ultrafast S1 --> T1 intersystem crossing in the third-row transition metal complexes, giving the strong phosphorescent emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...